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SUMMARY 

A second-order,  slender -wing theory has  been developed for  
incompressible  flow over low-aspect-ratio wings with and without leading- 
edge separation. The theory is second o rde r  in t e r m s  of the rat io  of span 
to  chord which i s  proportional to  aspec t  ratio. The theory has been devel- 
oped using the technique of matched asymptotic expansions. 
and Michael flow model was used for  the c a s e  with leading-edge separation. 
The theory proves to be somewhat l imited in  that it can only be reasonably 
applied to wings which satisfy the  Kutta condition at the trail ing edge in  
the first approximation. The present  resu l t s  obtained for  an  aspec t - ra t io-  
one gothic wing represent  a significant improvement for the separated flow 
c a s e  over the f i r s t -order  resu l t  but the predicted l i f t  is s t i l l  somewhat 
higher than the experimental  data. 
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LIST OF SYMBOLS 

a ra t io  of half span to  half root chord, b/c 

A7 aspec t  ra t io  

b half span of wing at trail ing edge 

C half root chord 

- c r ef e r enc e chord for pitching -moment coefficient 

Lift CL lift coefficient = , 
F P C  Sref- 

Moment cm pitching-moment coefficient about x ~ . ~ ,  = 
$ PU2 Sre f l? 

C pitching-moment curve slope 
ma 

GI function of X defined by Equation ( 3 8 )  

Gz function of ic defined by Equation (56) 

63 function of X defined by Equation (58) 

h(%) normalized half span of wing as a function of X 

Z E  designates imaginary pa r t  of complex quantity 

P ( x )  spanwise integrated loading as a function of X 

P(x,a)- local wing loading 

R.P. designates r e a l  par t  of complex quantity 

Sh) half span of the wing as a function of x 
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s normalized wing a r e a  

wing reference a r e a  for force  and moment coefficients = 2ac2Y 4e.f 

t t ime 

c/, f r e e - s t r e a m  velocity 

x ,  y, 3 outer var iables ,  physical var iables  normalized by C 

zm,  c. chordwise location of pitching-moment reference center  

X Y ;  z inner  var iables  

Y, 4 coordinates of vortex co re  in cross-flow plane 

a5 angle of a t tack 

r vortex strength 

3 1 bound vorticity distribution on wing 

& semiapex angle of delta wing; a lso,  a sma l l  pa rame te r  

normalized vortex coordinates in t ransformed 
c r o s s  -flow plane 

P complex outer var iable  ( s  2+-Lq)  

P 

0- 

f r e e - s tr earn density 

complex inner  var iable  ( = Z+;Y) 

location of vortex c o r e  in  cross-flow plane ( =  Z,  

velocity potential for  j t h  inner  solution 

velocity potential for  j k h  outer solution 
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INTRODUCTION 

The nonlinear aerodynamic charac te r i s t ics  of low -aspect - ra t io  
wings with angle of attack has been the subject of extensive theoretical  
and experimental  investigations over the past  s eve ra l  years .  
motivation of these investigations has been the application to  the low-speed 
aerodynamic problems of high-speed a i r c ra f t  and lifting reent ry  vehicles. 

The p r ime  

The  first analytical attacks on the problem were  made by Legendre 
(Reference l ) ,  Brown and Michael (Reference 2), Mangler and Smith (Refer-  
ence 3 ) ,  and Smith (Reference 4). Numerous experimental investigations 
have been conducted with some of the m o r e  fundamental low-speed studies 
being made by Peckham (Reference 5), Bergesen and P o r t e r  (Reference 6), 
Lemaire  (Reference 7) ,  and Wentz and McMahon (Reference 8), Thus far, 
the theoret ical  analysis of the problem gives resu l t s  which gross ly  over - 
est imate  the lift. A semiempir ical  method which gives an  accura te  es t i -  
mate  of the total l i f t  has  been developed by Polhamus in Reference 9. 
However, means to  accurately est imate  loading distributions a r e  s t i l l  
needed. 

It has  been established that the nonlinear behavior with angle of 
attack can be attr ibuted to the sp i ra l  sheets of vorticity that emanate f r o m  
the leading edges and f o r m  over the upper surface.  
of such flows a r e  indicated in F igure  1. 
attacks on the problem have been made via slender-wing theory employing 
the concept of two-dimensional analysis in the cross-flow plane. 
flow is the flow in planes t r ansve r se  to  the body axis. ) 
4 differ in the manner in which the sp i r a l  vortex sheet  is approximated in 
the cross-flow plane. 
model consists of a flate plate which represents  the t r a c e  of the mean camber  
surface of the wing plus some representation of the two sp i r a l  sheets  that 
emanate f r o m  the plate edges (i. e. ,  the  wing leading edge). The flow in 
the c r o s s  -flow plane is  determined using complex var iable  theory employing 
the complex velocity potential W defined such that v V =  b+iP where + is the 
velocity potential and y is the s t r e a m  function. 
Laplace 's  equation and a r e  determined using the constraints that: 

The general  features  
The previously mentioned analytical 

(The c r o s s  
References 1 through 

F o r  a wing without spanwise camber ,  the cross-flow 

@ and P a r e  solutions to 

1. The re  i s  no flow through the plate (wing). 

2 .  The sp i r a l  vortex sheet is a s t r e a m  surface and 
cannot sustain a force.  

3. The p r e s s u r e  a t  the edges of the plate (wing leading 
edge) is finite. 
edge Kutta condition. 

This i s  r e fe r r ed  to as the leading- 

Legendre (Reference 1)  represented the sp i ra l  sheets  simply by two con- 
centrated vort ices  above the upper surface of the wing. 
(Reference 2) represented the sheets by two concentrated vort ices  plus 

Brown and Michael 
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branch cuts in the complex potential that connect each vortex to its c o r r e -  
sponding plate  edge. 
ence 4) represented each sheet by segmented a r c s  terminated by a branch 
cut and a concentrated vortex. 

Mangler and Smith (Reference 3) and Smith (Refer-  

The agreement  between these theories  and experiment is shown 
in F igure  2. 
the right variation with angle of attack, they gross ly  overest imate  the l i f t .  

It can be seen  that, while these theories  qualitatively give 

Several  reasons for  this discrepancy have been suggested. P r i m a r y  
among these  have been the following: 

1. 

2. 

3 .  

F o r  a flat delta wing, the soiutions obtained a r e  
conical and violate the Kutta condition at the trail ing 
edge. 

The approximations to the sp i ra l  vortex sheet  have 
not been sufficiently accurate .  

The flow visualizations of References 7 and 8 indicate 
there  may be secondary separation on the upper sur face  
of the wing and the significant associated vort ices  a r e  
not accounted for in the theories.  . 

To examine the significance of the f i r s t  of the above suggestions, 
i t  would be necessary  to  develop a method to calculate the t ruly th ree -  
dimensional flow field over low-aspect-ratio wings. 
of the low-aspect-ratio-wing problem would requi re  a l if t ing-surface theory 
in which the wing can be represented by a sheet  of distributed bound vorticity. 
The Kutta condition is applied at all swept edges of the planform and a t  the 
trail ing edge. Trail ing vorticity is allowed to f o r m  at all swept edges and 
the trail ing edge. The trail ing vorticity formed a t  swept leading edges 
s t r eams  back over the upper surface of the wing. Such a flow model is 
shown in F igure  1. 
tangency condition must  be applied on the wing surface.  Fur thermore ,  
the trail ing vorticity must  l i e  on s t r e a m  sur faces ;  that is, there  is no 
flow through the trail ing sheets and no p r e s s u r e  discontinuity a c r o s s  
them. Conservation of vorticity can be applied a t  all edges where trail ing 
vorticity fo rms  to re la te  the trail ing and bound vorticity. 
then, the tangency conditions and the Biot-Savart laws resul t  in an  integral  
equation which, in  principle, determines the s t rength of the bound vorticity 
similar to  ordinary lifting-surface problems. 
plicated, however, since the location of the trail ing vorticity over the wing 
i s  unknown a pr ior i .  
to a r r i v e  at a solution. However, the complexity of the problem has,  thus 
far, made this type of approach to the problem intractable.  

A rigorous t reatment  

This represents  a wing with a nonplanar wake. The 

In this fashion, 

The problem is great ly  com-  

In principle, an i terat ive technique could be applied 
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Therefore ,  it appears  that a promising approach to examining 
three-dimensional effects would be to devise a method to modify o r  
co r rec t  the slender-wing o r  cross-flow analysis. 
been developed using the technique of matched asymptotic expansions. 

Such a method has  

While the objective was to t r ea t  the problem of separated flow 
over low-aspect-ratio wings, the techniques were  developed first for  
application to the unseparated flow case.  This approach provided the 
foundations upon which the analysis of the separated flow problem was 
based. 
the sake of c lar i ty  and completeness of this report ,  although i t  duplicates, 
to some extent, the analyses of Wang in Reference lo*. 
did not consider the separated flow problem. 

The development for the unseparated flow c a s e  is presented for  

However, Wang 

The  resu l t s  for  the unseparated flow c a s e  a r e  compared with 
available f i r s t  -order  theories and experimental data. The comparison 
reveals  cer ta in  significant limitations of the analysis,  par t icular ly  with 
regard  to application to  delta wings, which apply to the separated flow 
problem as well. 

The  development of the techniques of matched asymptotic expan- 
sions for  consideration of the separated flow c a s e  is presented. 
and Michael 's  c r o s s  -flow representation of the separated flow (Reference 2) 
was used as the f i r s t -o rde r  model in the inner solution. This flow model 
was selected because i t  is compatible with the matched asymptotic expansion 
approach and, although relatively simple,  yields numerical  resu l t s  that a r e  
not significantly different f r o m  the more  complex representations of Mangler 
and Smith (References 3 and 4). Although the cross-flow model of Mangler 
and Smith appears  to correspond mor e closely to experimentally observed 
flows, it proves to be impract ical  for u se  in the present  scheme. 

Brown 

A promising new cross-flow model was a l s o  considered which was 
based on a configuration studied by Drasky (Reference 11). This model 
offered the possibility of replacing the branch cut in Brown and Michael's 
model with a m o r e  real is t ic  sp i ra l  vortex sheet without having to  r e s o r t  
to a numerical  solution l ike Mangler and Smith. These features  make it 
par t icular ly  appealing for  us e in the matched asymptotic expansions analysis.  
Unfortunately, i t  was found that the model, in i t s  present  form,  cannot satisfy 
all of the essent ia l  physical constraints of the problem, 
fur ther  although i t  is believed that minor modifications to the present  model 
could eliminate i t s  limitations. 

It was not pursued 

This investigation is  reported in  Appendix A. 

::: 
This re ference  came  to the authors '  attention during the preparation of 
this report  and the analyses presented were  developed independently, 
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MATCHED ASYMPTOTIC EXPANSION APPROACH 

The theory of matched asymptotic exapnsions was originally 
developed for  viscous flow problems, 
original development of the technique may be found in  Reference 12.  
An additional reference where applications to some nonviscous flow 
problems a r e  considered is Reference 13. 
techniques is given in Reference 14. Briefly, the fundamental ideas  
involved may be descr ibed as follows. 
potential can be expanded in a se r i e s  in  some small p a r a m e t e r e  (in the 
present  application, this parameter  is the ra t io  of wing span to wing chord) 
and, fur thermore ,  that this solution can  be divided into two pa r t s :  one 
par t ,  valid for small E far f r o m  the wing, called the outer solution and 
the other par t ,  valid for  small E near  the wing, called the inner solution. 
In general ,  the inner  and outer solutions cannot be completely determined 
f r o m  the boundary conditions which apply to each solution. 
pleteness is resolved by requiring cer ta in  compatability between the 
solutions r e fe r r ed  to as  matching conditions. Following the notation of 
Reference 13, we denote the outer solution by 4' and the inner solution 
by P'. gois determined a s  

The fundamental details  and 

A concise statement of the 

It is assumed that the velocity 

This incorn- 

where 

The first M t e r m s  of this expansion will be called the rn- term 
a r e  r e fe r r ed  to a s  outer var iables  and outer expansion. Here,  z,y, 

a r e  chosen such that the lea  f. ing t e r m  i s  not a function of E .  The 
a r e  r e fe r r ed  to as gage functions and have the property that 

6 9  A- = o .  
6-0 fn-, 

Similarly,  is determined as 

g ~ ' =  ~ ~ i ~ x z , - ~ )  = j++,(e,g:'+ 
and the first m t e r m s  of this expansion a r e  r e fe r r ed  to as the m-term inner 
expansion. X z t  a r e  the inner var iables  chosen such that the leading t e r m  
is not a function of E and again 

The inner and outer var iables  a r e  related by a function of E .  We call  
the expansion obtained by substituting inner var iables  in the m-term 
outer expansion, expanding for  small E and retaining the f i r s t  n t e r m s  
a s  the D - t e r m  inner expansion of the m - t e r m  outer solution. 
viate this as "n inne r  ( m  outer)". Similarly,  we can f o r m  the m-term 

We abbre-  
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outer expansion of the n - t e r m  inner solution by substituting outer var iables  
in the n - t e r m  inner solution and expanding to M t e r m s ,  This is abbreviated 
as "mouter ( n  inner)". 
outer solutions can then be stated a s :  

The matching that we requi re  between inner  and 

rn outer ( n  inner) = /I inner ( m  outer).  

This i s  the asymptotic matching principle as presented in  Reference 13. 

Van Dyke (Reference 15) has  used this technique to develop a 
lifting-line-type theory for high-aspect-ratio wings. 
of this technique to  low-aspect-ratio wings, the c r o s s  -flow solution can 
be regarded as the first inner solution. 

In the application 

The s lender  -wing problem involves severa l  small pa rame te r s  
in  which a n  expansion could be considered such as thickness ra t io ,  aspect  
ra t io  and angle of attack. The p r imary  in te res t  of this investigation is 
in  the lifting problem for  thin slender wings. 
between thickness and angle-of-attack effects is neglected and the flow 
about an  infinitely thin wing is considered. 
expansion approach is used to develop a theory which is of higher o rde r  
in aspect  ratio. The variation with angle of attack is determined by the 
cross-flow model which is used as the first inner solution. F o r  example, 
in the unseparated flow problem, the cross-flow model consists of simply 
the flow normal  to a flat plate with no f r e e  vorticity on the l ee  side. 
this inner solution resu l t s  i n  a theory which is l inear  in angle of attack. 

Therefore,  the interaction 

The matched asymptotic 

Hence, 
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THE UNSEPARATED F L O W  CASE 

Coordinate Sys tem and Geometry 

The flow about the wing is i l lustrated in the following sketch. 

The dimensional var iables  a r e  ,z,* z2, xj . 
The nondimensional var iables  a r e  x =  x , / c  

y -  xz/c 
5 = x j / c  

where t is one-half the centerline chord. 
edge is given' by 

The equation of the wing leading 

2.L.E. = d m  
GL = b/c 

where 

and b is the half span of the  wing. 
increasing function of x and arete 

We requi re  that h be a monatonically 

We define a velocity potential # such that 

where  u,eur, are  the velocities in the x,y,s directions,  respectively,  
governing differential equation for  + is Laplace 's  equation; i. e . ,  

The 

(1) 

With boundary conditions appropriate  for small angle of attack: 

Tangency e Y = O  f o r  q = O s  -?"x-PJ,  I s l 4 a - h  (2a) 

Upstream d - ~ ~ c ( s + a g )  for  x - + - m  

and 3,y -s- @ 

Kutta condition bounded a t  trail ing edge 
of wing. (This  condition will be discussed further.  ) (2c) 
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Outer Limit P r o c e s s  

We can, as in conventional lifting -surfac e theory, represent  
the wing by a distribution of bound vorticity and the wake by trail ing 
vorticity. The s t rength of the trail ing vorticity is  determined by the 
Helmholtz laws and the bound vorticity is determined by the tangency 
condition. Such a solution is 

where P(xoJ$o) 
vorticity distribution by 

i s  the local p r e s s u r e  loading which is related to the bound 

puw r ( x o J y 0 )  = P ( . O 2  20) 
where 3 ( X 0 ,  go) i s  the local  bound vorticity distribution. 
i s  then the l imit  of this solution as a becomes small with F, y ,g  fixed. 
for small a, Equations ( 3 )  becomes 

The outer solution 
Now, 

where F(zo)= P(xo,3 , )  dj, and i s  yet undetermined. la; 
Equation (4) represents  the potential for a distribution of singu- 

la r i t i es  along the x-axis f r o m  1 to -1 of strength p(x,,) and i t  is tentatively 
assumed that 

m 

n=1 
Then, Equation (4) becomes 

00 

which is of the f o r m  ~ ' = , ~ $ - o a z j  e 

this outer solution with gg inner solution. 
P(3,)  will be determined by matching 

Inner Limit P r o c e s s  

To obtain the inner solution, we t r ans fo rm the problem using 
inner var iables  defined as 

x = x  ; Y = y / a  ; z =  p/a 
(i. e , ,  we s t re tch  the dimensions perpendicular to the line singularity or 
x axis).  
and derivatives with respec t  to X Y Z  of order  one in the vicinity of the 
Xaxis.  Since axis a relevant t r ansve r se  dimension a s  well as  ah/Xj, 

This transformation renders  all relevant geometric quantities 
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this then implies  a res t r ic t ion  on a such that a/& is of o rde r  one. In t e r m s  
of the boundary conditions, this is the s a m e  as saying that the disturbances 
t r ansve r se  to  the flow a r e  all of the s a m e  order  of magnitude. 

We now seek  a solution '?ix,Y, Z)valid in  the vicinity of the axis. 
Substitution of inner  var iables  in  Equation (1) leads to 

with boundary conditions 

.&, $6,  $1 bounded at trail ing edge. (7c) 

Equation ( 7 c )  will be discussed latter.  

It is tentatively assumed that d;' can be expanded as 

The first gage function is determined by the ups t r eam condition [ Equa- 
tion (7b)l .  
and the collection of t e r m s  of like powers of a yields 

Substitution of this simple power s e r i e s  for Qi' i n  Equation (6) 

i 4," sat isf ies  Equation (8) and -cK% for  X - g m  ~ We conclude 
that 

$" = c u,x (11) 

Solution for  +,i 

gTf sat isf ies  Equation (9)  and $;-caYU& for  X- 00 ~ Also, 



We recognize these as the conditions for  a flat plate of width h 
normal  to a s t r e a m  of velocity U'a which has the solution 

g:' + ig,i = - L ' c  L', a (12) 
where c = Z + l k ; ' @  and 9 a r e  velocity potential and s t r e a m  function, respectively. 
We a r e  now in a position to determine G ( X  by matching. 

Matching 

We now determine 6 ( X )  by use  of the "asymptotic matching 
principle" which has  been stated in shorthand f o r m  as  

m outer ( n i n n e r )  = n inne r  (mouter).  

We can accomplish this for  n =  m = 2 
the two- te rm inner solution is  

. We s t a r t  with the inner  solution; 

In view of the previous comments that Ia/u)must be of order  unity, Equa- 
tion (1 3a) could have been equivalently expressed as 

This i s  the f o r m  of the well-established slender -body resu l t s  of Refer - 
ences 17 ,  18 and 1 9  which suggest that the f i r s t  gage function should be 
a Z r a t h e r  than CL as in Equation (13a). It i s  a l so  the f o r m  which we find 
is required in the investigation of the Drasky-type cross-flow model of 
separated flow discussed in Appendix A. 
ment, we shal l  continue to  use  Equation (13a). 

However, in the present  develop- 

Substitution of outer var iables  (i. e . ,  F=a+ks/=acr ) in Equation (13a) 
yi eld s 

Expanded for  small a, 

Now, retaining the f i r s t  two t e r m s  in a ,  we have 
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Back in t e r m s  of inner var iables  

which is, in our abbreviated notation, "2 outer (2  inner)". 

We now look a t  the outer solution. The two- te rm outer expansion 
is 

Expressed in t e r m s  of inner  variables,  this becomes 

H e r e  we have 
differ entiat ed 

integrated twice with respec t  t o X  under the integral  sign and 
twice with resDect to X outside the integral  in o rde r  to  avoid 

divergent t e r m s  in subsequeht expansions. 
tion (1 8) becomes 

Expanded for small a, Equa- 

Y Z + Z "  2 
@b-Cu~(X+uaYIf---- 

a3c Y- 6 ( X O )  
t- 

4rpU, JX - f  2 

where,  at this  t ime,  w e  need only retain the first two t e r m s  so that 

2 inner (2  outer) = c , y w ( ~ t a a Y ) t -  p+syn(X-x, , 3 d X O  0 ( 2 0 )  

Matching the second t e r m s  of Equations (20 )  and (17) ,  we  obtain 

or  
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Differentiating, obtain 

This resul t  is equivalent to Jones '  s lender  -wing resul t  (Refer  - 
ence 16) and, for  a delta wing, is  readily integrated to yield 

To improve this resul t ,  we must  obtain the third t e r m s  in  the 
inner and outer solutions. 
next t e r m  in  the inner solution should consist  of an  a3 t e r m  plus a n  
a3ha t e rm.  
(two outer) shows the nonexistence of any a' t e rm.  

Inspection of Equation (19) indicates that the 

Matching of the two outer ( th ree  inner)  to the th ree  inner 
Then, 

Inspection of Equation (15) shows that the next t e r m  in  the outer 

However, we observe that 
expansion must  be an  a4 t e r m  but is not of the s a m e  type of singularity 
as $f..O [ s e e  Equation (5) ] .  

.I - which suggests that z3 - 2 GigTt s 

where 

and to de t e rmineK@J we must match two inner ( th ree  outer) to th ree  outer 
(two inner) .  Equation (15) i s  essentially the second expansion. 
proceed to calculate the f i r s t  expansion. 

We therefore  

W e  performed the  differentiation with respec t  to 2 indicated in  
Then we integrated and differentiated twice with respect  Equation (24). 

to X as in Equation (18) in  order  to  avoid subsequent singular t e r m s .  
Equation (24) then becomes 



Substitution of inner  var iables ,  expansion for small a, and performance 
of the differentiation yields 

where the second t e r m  is not present ly  needed but will be required for 
l a t e r  matchings. We now can construct 

where the f i r s t  two t e r m s  have been matched previously [by  matching 
Equations (17)  and (20) 1. Reexpressing Equation (15) in inner var iables ,  

Matching the l a s t  t e r m  in Equation (27)  with the last t e r m  in Equation (28),  
w e conclude that 

o r  
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We now have the th ree - t e rm outer expansion a s  

( 3 0 )  

The t h r e e - t e r m  inner  expansion of this resu l t  i s  

We now seek  as”, and di2 such that the 3 outer ( 3  inner) is equal to  Equation ( 3 1 ) .  

F r o m  Equation ( l o ) ,  we see  that $:, sat isf ies  

Then, @:, must be composed of a complementary and par t icular  solution; i. e. , 

The par t icular  solution is most  easily found by using the complex 
potential fi;‘) where W’’? = &((P) + L&,(P)* 

t ransforms Equation (32) to  
This plus the substitution o-= Z t i y  

6 = 2 -iY 

which is readily integrated to 
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and leads to  
L 

@3, i (P, = - I .  p. - 6= ua[o-tj' '(o-' -h ')- - ( h  h')'cosh- . 
4 

We now choose #i,(c) such that 

a. i t  sa t isf ies  @3;z21c) + / c )  = 0 
YY 

b. the outer limit of $;, combines with dr: 
the u' t e r m  of Equation (31), and 

to produce 

c. t he re  is no resultant flow through the surface.  

Such a solution is found by inspection to  bed 

I' 
#3132 is found m o r e  easily. It sa t isf ies  the homogeneous equation 

i I 
GYY + $32 22 = 0 

and the tangency condition. It is found by inspection to be 

i ( h  h') 
$32 = I.P U, a c  io-=- h2 - . z 

We now can construct the t h r e e - t e r m  inner  expansion 
li - gi -I- a$. +a$#;, + aJRy && 

o r  

where 

We now have obtained the t h r e e - t e r m  inner  and outer expansions, 
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Results 

It can be shown that the t e r m s  in @'' that involve ( r -+ - )do  not 
contribute to the lift,  
determine the lift as 

Therefore,  we m a y  use  Blasius '  theorem to 

where 

The pitching -moment coefficient is readily obtained a s  

where .Xmec. is  the chordwise location of the moment reference center  and 
c' i s  the reference chord. 

The integral  expression appearing in G,(.z) can be evaluated using 
the following formula derived f r o m  Reference 17: 

This expression then can be differentiated once m o r e  to obtain the des i red  
fo rm;  that is, 

In general ,  for  this integral  to exist in  the s t r i c t  mathematical  sense,  the 
following must  be t rue :  

15 



F is proportional to  P ( t h e  chordwise loading). 
the condition that Pf - f )  = D is satisfied.  
to  the Kutta condition at the trail ing edge. 
tional res t r ic t ion  that the derivative of the chordwise loading at the trail ing 
edge should a l s o  be zero,  

If the wing apex is pointed, 
The  condition that F(f)=D is  equivalent 

Equation (42b) imposes the addi- 

This leads to  the following restr ic t ions on planform: 

h ??I = 0 (Kutta condition) (43a) 

These restr ic t ions were  a l so  encountered t y  Adams and Sea r s  (Reference 20)  
in their  not-so-slender wing theory. 

If the concept of the "finite p a r t  of a divergent integral" (Refer-  
ences 21 and 22) is used, the integral  appearing in  G,(x) in Equation (38) 
can be evaluated fo r  all planforms. 
the l i f t  curve slope as a function of X f o r  two planforms. 
wing with h = $ (3t2x-xZ), we obtain 

This concept has  been used to evaluate 
For  a gothic-type 

(44b) 3 77- C = - -C, -+ - (2 l33a - O,Z8p a&+ 0. /3.Za3&a) 
ma 4 e 4  

c' where  
data of Reference 5. 

= -0. 125 and T = 0. 667 to correspond with the experimental  
For delta wings, h = a  (IcZzs)and 

These resu l t s  a r e  plotted in  Figures  3, 4 and 5 where  they a r e  compared with 
f i r s t -o rde r  theory and l imited experimental data. 
wing appear  quite reasonable,  
by Equation (45) offers no significant improvement over Jones '  theory. 
gothic wing satisfies Equation (43a) but not Equation (43b). 
satisfies Equation (43b) but not Equation (43a). 
that useful resu l t s  may be obtained provided the  planform sat isf ies  Equa- 
tion (43a). 

The resul ts  for  the gothic 
The resu l t s  for a delta wing as represented 

The delta wing 
This comparison suggests 

The 

The problem encountered at  the trail ing edge in  this theory i s  
analogous to  the one encountered by Van Dyke (Reference 15) a t  the wing 
tips of a high-aspect-ratio wing. We can expect problems in developing 
higher -order  solutions when the f i r s t -o rde r  solution contains a jump 
discontinuity in the p r e s s u r e  when passing f r o m  the wing to  the wake. 
Van Dyke (Reference 15) was ab le  to circumvent this problem by devising 
another expansion valid in the immediate vicinity of the wing tips and then 
matching this solution with the solution valid over the remainder  of the 
wing. This technique does not appear to be promising for  our present  
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problem. Such a procedure,  in  this case ,  would t r ans fo rm the problem 
of the actual  flow over the trail ing edge to the problem of determining 
the flow over the trail ing edge of a finite span wing with semi-infinite 
chord for  which no solution is known at this time. 

It does appear ,  however, that the problem can be solved by adding 
an additional distribution of singularit ies on the wing surface to the first- 
o rde r  solutions. 
meets  the Kutta condition at the trail ing edge. The f i r s t  two t e r m s  in the 
inner solution would then be represented by 

These singularit ies should be such that the total  solution 

I"= u,cx + a f?.E ic I -  U&aZ p Z 2 + f , ( d F , ( G - ;  x )  j 
where G ( r ; ' X ) i s  the additional distribution of singularit ies.  fi(C;x,) must  
be chosen to  have cer ta in  asymptotic propert ies  such that matching with a n  
outer solution is possible. 2</% evaluated on the wing surface must  contain 
a f d m  t e r m  to sat isfy the Kutta condition all along the trail ing edge, and 
~ ( G - ; z )  must  p re se rve  the tangency condition on the wing surface.  
nately, these  constraints plus the boundary conditions expressed by Equa- 
tions (2a) through (2c) do not determine 7$(z)F,(r;~) uniquely. 
locally valid in the vicinity of the trail ing edge must  be developed to  resolve 
this nonuniquenes s. 

Unfortu- 

A solution 

1 7  



THE SEPARATED FLOW CASE 

The development of the solution for  the separated flow c a s e  follows 
l ines similar to  the unseparated case.  
separated flow c a s e  a r e  given by Equations (2a) through (2c) with the addi- 
tional requirement  of a Kutta condition at the leading edge as well  as the 
trail ing edge. 
tion to  the cross-flow model of a representation of the sp i r a l  vortex sheets  
that f o r m  on the l ee  s ide of the wing. 
model has been used for  this analysis.  

The boundary conditions for  the 

The differences in the solution a r e  introduced by the addi- 

The Brown and Michael cross-f low 

A line distribution of doublets again proves adequate fo r  the f i r s t  
outer solution (with the strength variation modified to  account for  the vortex 
formation). 
higher-order  t e r m s  in the outer solution. 
t e r m  in  the outer solution is now of o r d e r  a3 instead of a4 as in the unsepa- 
ra ted flow case.  

However, the vortex formation has  a pronounced effect on the 
As will be shown, the second 

In the inner  solution, the order  of the f i r s t  two solutions i s  unaf- 
fected by the vortex formation although the solutions a r e  considerably m o r e  
c omplicat ed. 

Inner Solution 

F o r  the separated flow case,  the cross-f low model of Brown 
and Michael (Reference 2)  was used in formulating the f i r s t  inner solution. 
In this model, the representation of the vorticity on the l ee  side of the 
plate consists of two concentrated vortices connected to their  respect ive 
plate edges by branch cuts in  the velocity potential. 
flow model and the method used to determine the vortex strength and 
location a r e  discussed in Appendix B. 
consider the vortex strength and position a s  known functions ofX. 

The details  of this 

F o r  present  purposes,  we may 

The  appropriate  two-term inner solution for  the Brown and 
Michael flow model is 

m' = u, acx- a f?.P i u - a c p 7  

The vort ices  on the lee  s ide of the wing a r e  located a t  q and -% . 
strength of each is f 

The 
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The outer expansions of Equation (46) required for  matching and 
wri t ten in  terms of inner  var iables  a r e  

2 outer (2  inner)  = ~~,czcXt. a U, m c y  I 

3 outer ( 2  inner)  = Om e c X  + a { u, CXCY 

where the following substitutions have been used 

Outer Solution 

The t h r e e - t e r m  outer solution is now 

where F&) and A ( ~ , ) a r e  to be determined by the matching conditions. 
Here,  the las t  t e r m  is deduced f r o m  the las t  t e r m  of Equation (47b). 
obtain the inner limit of this expression, we substitute the inner var iables  
and expand fo r  smal l  a. Then, the following two expansions a r e  obtained: 

To 

2 inner (2  outer) = U, cx -+ a 
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and 

3 inner  ( 3  outer)  = 

Matching 

Matching the two outer (two inner )  to  two inner  (two outer) [ that  is, 
Equations (47a) and (49a)l r e su l t s  in  

where  the p r i m e  denotes differentiation with r e spec t  to A. 
inner ( th ree  outer)  t o  t h r e e  outer (two inner) ,  we obtain 

Matching two 

20 



After substitution of these resu l t s  in Equation (49b), the th ree  inner  ( th ree  
outer) becomes 

We s e e  f r o m  Equation (52) that the next inner solution must be 
of the form 

a3& + aJAa ,  !g.. 

g;; = &: (P) + g3, f c )  
where 

where $ i ( P )  i s  the par t icular  solution of 

a' . 
6'' ( f )  +$$PI zs = - a x L  - @," j'w 

This equation is solved s imi la r ly  to Equation ( 3 2 ) .  

(53) 
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The par t icular  solution i s  determined to be 

I L g3,(C) and $92 satisfy Laplace 's  equation and the boundary condition 
of no flow through the plate. They a r e  chosen such that the three  outer 
( t h ree  inner)  expansion matches Equation (52)  and the Kutta condition a t  
the leading edge i s  preserved.  

This i s  found by inspection to be 

(55) 
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Then, is 

and 

R e s ult s 
I' Again, as in the unseparated flow case,  the t e r m s  in g3, containing 

(3-r) do not contribute to the lift and Blasius '  t heo rem may be used to ca l -  
culate lift. This r e su l t s  in  the following expressions 

2 3  



and the corresponding loading i s  

The factor  z'($ 425f)appearing in Equation (59a) is recognized as the 
l i f t  coefficiesnt as evaluated f r o m  the Brown and Michael analysis  with 

Again, Gz(x) contains a n  integral  of the type given in Equation (41). Unfor- 
tunately, the f i r s t -order  loading for  the separated flow case ,  Equation ( 5 0 ) ,  
i s  of such a f o r m  that the requirements  o n h  cannot be derived explicitly. 
However, in  view of the resu l t s  obtained for  the unseparated flow case,  we 
can expect reasonable resu l t s  only for the gothic wing. Therefore,  this 
was the only planform for  which numerical  resu l t s  were  obtained. Since 
the vortex strength and position a r e  implicit  functions of a as well as x ,  
Gz(f,J and G3(1/ a r e  a l so  implicit functions of LE: and Equation (59) must  be 

evaluated numerically for  C, e Results have been obtained for  an  aspec t -  
ratio-one gothic wing with h =-$(3+2~-2) and a r e  presented in F igure  6. 
Again, the "finite-part concept" was used to evaluate the integral  in  G2(t). 
It is seen that the present  resu l t s  offer a significant improvement over the 
f i r s t -o rde r  Brown and Michael theory but a r e  s t i l l  somewhat higher than 
the experimental  resul ts .  
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DISCUSSION OF RESULTS AND CONCLUSIONS 

A second-order, s lender  -wing theory has been developed for  
incompressible  flow about s lender  wings with and without leading -edge 
separation. The theory applies to wings that have sufficiently smooth 
planform shapes.  For planforms such as  the gothic which satisfy the 
smoothness requirements ,  the inclusion of second-order  aspect  - ra t io  
effects resu l t s  in a significant improvement over f i r s t -o rde r  theory 
in the prediction of l i f t .  
second-order  theory predicts  values of l i f t  that a g r e e  closely with 
the experimental  resu l t s  up to a n  angle of attack of approximately 
twelve degrees .  
rated flow effects were  represented by the ve ry  s imple cross-flow 
model of Brown and Michael (Reference 2). 

F o r  a gothic wing of aspec t  ratio 1. 0, the  

This agreement  was obtained even though the sepa -  

Fur thermore ,  the improved l i f t  prediction for  the gothic wing 
was obtained even though the separated flow model was not required to 
satisfy the Kutta condition a t  the trail ing edge. Only the f i r s t -o rde r  
unseparated flow model happens to meet  this condition for  the gothic 
planform. Therefore ,  the improvement in the theory for  the separated 
flow case  must  be attr ibuted to the inclusion of second-order aspec t - ra t io  
effects. 

The delta planform does not have the required smoothness a t  
the trail ing edge and s o  not even the unseparated f i r s t -o rde r  model 
satisfies the Kutta condition in this case.  The second-order theory 
fails  to produce any improvement in the prediction of l i f t  fo r  unsepa- 
rated flow over a delta wing. This fa i lure  is attr ibuted to the nonuni- 
formity of the f i r s t -o rde r  (i. e . ,  the conventional slender-wing) theory 
a t  the trail ing edge. Before a higher-order  theory which will be valid 
fo r  delta-wing planforms can be developed, the f i r s t -o rde r  flow model 
must be modified to eliminate the nonuniformity a t  the trail ing edge, a t  
l eas t  in the unseparated case.  

In view of the fai lure  of the second-order theory for  delta wings 
in unseparated flow, this development was not pursued fur ther  for  appli- 
cation to the separated flow case.  

A new cross-flow model for  the slender-wing problem was 
investigated. 
a vortex and a sink located a t  i t s  core .  
the single logarithmic sp i r a l  solution obtained by Drasky in Reference 11 ,, 
The double sp i r a l  solution proves to be inadequate fo r  the slender-wing, 
c r o s s  -flow problem because i t  cannot satisfy the appropriate  boundary 
conditions on the vortex sheet. 

The model consisted of a double logarithmic sp i r a l  with 
The model was patterned af ter  
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APPENDIX A 

Drasky Flow Model 

An analytic solution for  the c r o s s  flow is des i red  for u se  in 
the matched asymptotic expansion analysis  of the separated flow case.  

It appeared that a fundamental solution developed by Drasky 
(Reference 11) for  a two-dimensional nonsteady logarithmic sp i r a l  
vortex s.heet with a concentrated vortex and a sink located at its co re  
could s e r v e  as a basis for  the desired soiution. 
the complex velocity potential is of the f o r m  

Drasky 's  solution for  

where 7 is the complex variable. 
in a m o r e  general  sense  by Alexander (Reference 26). 

Such solutions have a l so  been studied 

If we let  o- be the complex var iable  i n  the physical plane, then 
the c r o s s  -flow problem for  the separated-flow, slender-wing c a s e  is 
most easily analyzed in the t ransformed7 plane where q 2 =  crz-hz. This 
transformation t ransforms the plate into the ver t ical  
resulting flow is sketched below. 

ax is  and the 

( PHY S I CAL PLAN E)  (TRANSFORMED PLANE) 

CT PLANE 

The advantage of this transformation is that a solution symmetr ic  
about the 5 axis automatically sat isf ies  the condition of no flow through the 
plate. 
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A study of References 11 and 26 indicates that the des i red  
solution in  the 7 plane should be of f o r m  

where 

(A -2b) 

(A -2c) 

Here,  f , (q)  represents  the complex potential of the sp i r a l  sheets  and F"(7) 
represents  the complex potenJia1 of the concentrated singularit ies located 
a t  the sp i r a l  co res  a t  r ,  Q ,  f , C, , C, a r e  functions of X to be 
determined. The conditions available to determine these functions a r e :  

and - 9  

1. The re  is  no flow through the plate o r  vortex sheet. 
The sheet and plate a.re s t r e a m  surfaces .  

2. There  is no p r e s s u r e  jump a c r o s s  the vortex sheet. 

3. The loading at the edge of the plate is z.ero (Kutta 
condition). 

We then a s s u m e  that the inner solution expands as 

where @; is of the f o r m  of Equation (A-2). 
co r rec t  f i r s t -o rde r  conditions on the vortex sheet,  it is found that the 
f i r s t  gage function must  be a'. Since the analysis  i s  performed in the 
t ransformed 'I plane, the requirement  of no flow through the plate need 
not be considered fur ther .  

In o rde r  to generate  the 

If the vortex sheet is given bydK?;X)= 0, the exact s t r e a m  
surface requirement  on the sheet can be specified by 

V+V& = 0 ;  (on sheet)  (A -4) 

where B is  the vector differential operator 



Substituting Equation (A-3) into Equation (A-4) and retaining 
only the leading t e r m s  in a, Equation (A-4) reduces to 

urn!& * +d* @; = 0 ; (on sheet). (A-5) 

The p r e s s u r e  may be calculated f r o m  the Bernoulli’s equation a s  

- -  2p = v p  - vas. 
P 

The approximated f o r m  of the p r e s s u r e  jump condition on the sheet  
is then 

A(-?,) = A[ZUm@,8-  + c#.;,“ + 6fB2] = 0 ;  (on sheet)  (A-7) 

Here,  A means jump a c r o s s  the sheet. 
the conditions derived by Smith (Reference 4). 

Equations (A-7) and (A-5) a r e  

The leading-edge Kutta condition i s  most  easily applied by 
requiring that the origin of the t ransformed plane be a stagnation point 
o r  

Matching requirements  would determine C, as  

Drasky locates the s h e e t d  by making the z e r o  s t reaml ine  of 4 a branch 
cut. If w e  le t  

r - 9  = r, el‘@‘ 
- U-tF = Pa 

we find that .d i s  given by 

d + a , : + e , + e , - a = o .  (A-9) 

If we le t  
the following two relations : 

= rBe’@@ , the Kutta condition [Equation (A-8)] resu l t s  in 

6J8 = 40” (A-10) 

and 

/ - = p a .  
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This last condition unfortunately a l so  makes the z e r o  s t reaml ines  of 
F, and f Z  coincide so  that 

= 8 ;  (on sheet)  (A-12) 

which has  been verified through substitution. 
in  Equation (A-5) gives 

Insertion of Equation (A -1 2) 

A* = 0 (A-13) 

This indicates that the sheet  shape is not a function of X which 
i s  a physically unacceptable result .  

We may r ea r r ange  Equations (A-5) and (A-7) into the following 
fo rms  : 

= - 2U- i  (on sheet), 
A [@< + 

A@& 

(A-14) 

(A-15) 

The functional requirement on @ and d can be imposed that they must 
combine s o  that the left-hand s ide of both Equations (A-14) and (A-15) 
a r e  either nonzero constants o r  a r e ,  a t  most, functions ofX only 
(that is, no Z o r  I' dependency). Examination of Equations (A-2) and 
(A-9) show that they do not meet this functional requirement fo r  Equa- 
tion (A-15). Therefore ,  we conclude that a !?; of the f o r m  of Equa- 
tion (A-2) a n d d  a s  given by Equation (A-9) do not compr ise  a sa t i s -  
factory solution for the posed c r o s s  -flow problem, 

Two modifications to this solution were  a l so  considered. F i r s t ,  
It was found that the sink was removed f r o m  Equation (A-2) (i. e . ,  Q.0). 

such a solution cannot satisfy the leading-edge Kutta condition. Second, 
the sheet shape was modified by making the sp i r a l  lead angle a function 
of (X). 
requirements  of Equations (A-14) and (A-15). 

However, no shape has  been found that sat isf ies  the functional 

The basic failings of this flow model apparently resul t  f r o m  
application of the leading-edge Kutta condition [ Equation (A-8) ] which 
was not a constraint  considered by Drasky (Reference 11). The Drasky 
model was not pursued fur ther .  
fur ther  consideration and should not be dismissed as having no potential 
applicability, The features  of this model appear  to be so similar to the 
essential  charac te r i s t ics  of the physical situation that, we believe, only 
minor modifications could prod-uc e a highly sat isfactory mathematical  
model, 

However, we believe that it mer i t s  
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APPENDIX B 

Brown and Michael Flow Model 

The Brown and Michael flow model and the method used to 

In the Brown 
calculate the f i r s t -o rde r  solutions fo r  the gothic and cambered wings 
a r e  outlined h e r e  for  convenience and completeness.  
and Michael flow model, each sp i ra l  vortex sheet  i s  represented by 
a concentrated vortex and a branch cut which connects the vortex and 
the leading edge. The resulting cross-flow model is indicated in the 
following sketch. 

VORTEX 

PLATE 
z 

The complex potential for  such a c r o s s  flow is 

where  7 is the strength of the vort ices  located at 
quantities a r e  to be determined. 

and-e,  and all t h r e e  

In this flow model, the local p r e s s u r e  jump and s t r e a m  surface 
conditions cannot be app.lied on the sheet. 
force  balance on the branch cut and concentrated vortex. 
plus the leading -edge Kutta condition then provide sufficient conditions to 
determine r a n d  5 . 

They a r e  replaced by an  overall  
The force  balance 

In this flow model, the branch cut can be  considered as a vortex 
sheet composed of vorticity aligned perpendicular to the f r e e  s t r e a m  with 
the strength of the sheet being only a function of X ,  
then give the strength of this sheet as$$. 
can be used to calculate the force  on the sheet and vortex. 

The Helmholtz laws 
The Kutta-Joukowski theorem 

The force  on the sheet F, p e r  unit depth is 
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The f o r c e  on the vortex f v  per  unit depth i s  

where 31 G7 is the complex velocity evaluated at q excluding the 
contribution f r o m  the vortex located at u 
dition then gives 

The leading-edge Kutta conditic 

The force  balance con- 

i i s  

/ I  

F o r  conical flow where  the unknowns can be considered as l inear ly  
proportional to  x ,  Equations (B-1) and (B-2) represent  a sys t em of nonlinear 
algebraic equations which can be solved numerically for  the constants of 
proportionality. 
(Reference 2). 

This was done in the original paper  by Brown and Michael 

F o r  nonconical flow, Equations (B-1) and (B-2) represent  a sys t em 
of coupled ordinary differential equations and can  be used as a continuation 
scheme to numerically calculate the flow field once sufficient init ial  con- 
ditions a r e  given at an  x station. This has been done by Smith in Refer -  
ence 23 for  curved leading edges and by Jobe in Reference 24 for  curved 
leading edges and camber .  

If we let  ~ - 7 + L . g  - and S = a c h  , then Equations (B-1) and (B-2) 
can be manipulated into the forms  
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M = ( A 6  t H Z ) ( A 2 - B 2 )  + Z A 0 ( i l H - z G )  
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The initial o r  s tar t ing conditions yo and /r, a r e  obtained by 
assuming that the flow is conical in the immediate  vicinity of the  apex, 
An approximate expression fo r  the conical solution is given in Refer -  
ence 24 as:  

go = -0.03038 (9)' + 0.28 057 (F) - 0.00457 
7. = -/.78322 ro3 f Z.Z948/~02 - U.98+07g0 tO.33031. 

Equations (B-3) and (B-4) have been integrated down the chord 
by use  of a fourth-order  Runge-Kutta method which i s  given in Refer-  
ence 25 * Once ,$? and 7 and, hence, 2 and Z a r e  known as functions of 
position, the vortex strength is  determined f r o m  the Kutta condition as 

A 2 +  z z  /-=nta- 
A 

and the integrated lift to  any chord station can be obtained f r o m  Blasius' 
theorem a s  

The above procedure has  been programed for a digital computer. 
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SP I RAL SHEETS 

t 
U, sincc 

CROSS FLOW 

Figure 1 FLOW MODEL WITH SIDE EDGE SEPARATION 
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